Photodeposition‐Based Synthesis of TiO2@IrOx Core–Shell Catalyst for Proton Exchange Membrane Water Electrolysis with Low Iridium Loading

Author:

Hoffmeister Darius12ORCID,Finger Selina12ORCID,Fiedler Lena12ORCID,Ma Tien‐Ching12ORCID,Körner Andreas1ORCID,Zlatar Matej12ORCID,Fritsch Birk1ORCID,Bodnar Kerstin Witte34ORCID,Carl Simon5ORCID,Götz Alexander5,Zubiri Benjamin Apeleo5ORCID,Will Johannes5ORCID,Spiecker Erdmann5ORCID,Cherevko Serhiy1ORCID,Freiberg Anna T. S.12ORCID,Mayrhofer Karl J. J.12ORCID,Thiele Simon12ORCID,Hutzler Andreas1ORCID,van Pham Chuyen1ORCID

Affiliation:

1. Forschungszentrum Jülich GmbH Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy 91058 Erlangen Germany

2. Department Chemical and Biological Engineering Friedrich‐Alexander‐Universität Erlangen‐Nürnberg 91058 Erlangen Germany

3. Fraunhofer Institute for Microstructure of Materials and Systems (IMWS) 06120 Halle Germany

4. Fraunhofer Center for Silicon Photovoltaics 06120 Halle Germany

5. Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM) Interdisciplinary Center for Nanostructured Films (IZNF) Friedrich‐Alexander‐Universität Erlangen‐Nürnberg 91058 Erlangen Germany

Abstract

AbstractThe widespread application of green hydrogen production technologies requires cost reduction of crucial elements. To achieve this, a viable pathway to reduce the iridium loading in proton exchange membrane water electrolysis (PEMWE) is explored. Herein, a scalable synthesis method based on a photodeposition process for a TiO2@IrOx core–shell catalyst with a reduced iridium content as low as 40 wt.% is presented. Using this synthesis method, titania support particles homogeneously coated with a thin iridium oxide shell of only 2.1 ± 0.4 nm are obtained. The catalyst exhibits not only high ex situ activity, but also decent stability compared to commercially available catalysts. Furthermore, the unique core–shell structure provides a threefold increased electrical powder conductivity compared to structures without the shell. In addition, the low iridium content facilitates the fabrication of sufficiently thick catalyst layers at decreased iridium loadings mitigating the impact of crack formation in the catalyst layer during PEMWE operation. It is demonstrated that the novel TiO2@IrOx core–shell catalyst clearly outperforms the commercial reference in single‐cell tests with an iridium loading below 0.3 mgIr cm−2 exhibiting a superior iridium‐specific power density of 17.9 kW gIr−1 compared to 10.4 kW gIr−1 for the commercial reference.

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3