The Zinc Transporter SLC39A10 Plays an Essential Role in Embryonic Hematopoiesis

Author:

He Xuyan12,Ge Chaodong1,Xia Jun3,Xia Zhidan1,Zhao Lu1,Huang Sicong1,Wang Rong1,Pan Jianwei1,Cheng Tao4,Xu Peng‐Fei4,Wang Fudi12ORCID,Min Junxia1

Affiliation:

1. The First Affiliated Hospital The Second Affiliated Hospital Institute of Translational Medicine School of Public Health State Key Laboratory of Experimental Hematology Zhejiang University School of Medicine 310058 Hangzhou China

2. The First Affiliated Hospital Basic Medical Sciences School of Public Health Hengyang Medical School University of South China 421001 Hengyang China

3. State Key Laboratory of Membrane Biology,Institute of Zoology, Institute for Stem Cell and Regeneration Chinese Academy of Sciences, University of Chinese Academy of Sciences 100101 Beijing China

4. Women's Hospital, and Institute of Genetics Zhejiang University School of Medicine Hangzhou Zhejiang 310058 China

Abstract

AbstractThe role of zinc in hematopoiesis is currently unclear. Here, SLC39A10 (ZIP10) is identified as a key zinc transporter in hematopoiesis. The results show that in zebrafish, Slc39a10 is a key regulator of the response to zinc deficiency. Surprisingly, both slc39a10 mutant zebrafish and hematopoietic Slc39a10‐deficient mice develop a more severe form of impaired hematopoiesis than animals lacking transferrin receptor 1, a well‐characterized iron gatekeeper, indicating that zinc plays a larger role than iron in hematopoiesis, at least in early hematopoietic stem cells (HSCs). Furthermore, it is shown that loss of Slc39a10 causes zinc deficiency in fetal HSCs, which in turn leads to DNA damage, apoptosis, and G1 cell cycle arrest. Notably, zinc supplementation largely restores colony formation in HSCs derived from hematopoietic Slc39a10‐deficient mice. In addition, inhibiting necroptosis partially restores hematopoiesis in mouse HSCs, providing mechanistic insights into the requirement for zinc in mediating hematopoiesis. Together, these findings indicate that SLC39A10 safeguards hematopoiesis by protecting against zinc deficiency‐induced necroptosis, thus providing compelling evidence that SLC39A10 and zinc homeostasis promote the development of fetal HSCs. Moreover, these results suggest that SLC39A10 may serve as a novel therapeutic target for treating anemia and zinc deficiency‐related disorders.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3