Emergence of Dynamically‐Disordered Phases During Fast Oxygen Deintercalation Reaction of Layered Perovskite

Author:

Yamamoto Takafumi1ORCID,Kawaguchi Shogo2ORCID,Kosuge Taiki1ORCID,Sugai Akira1,Tsunoda Naoki1,Kumagai Yu13ORCID,Beppu Kosuke4ORCID,Ohmi Takuya1ORCID,Nagase Teppei1ORCID,Higashi Kotaro2,Kato Kazuo2,Nitta Kiyofumi2,Uruga Tomoya2,Yamazoe Seiji56ORCID,Oba Fumiyasu1ORCID,Tanaka Tsunehiro67ORCID,Azuma Masaki189ORCID,Hosokawa Saburo610ORCID

Affiliation:

1. Laboratory for Materials and Structures Institute of Innovative Research Tokyo Institute of Technology Yokohama 2268503 Japan

2. Japan Synchrotron Radiation Research Institute (JASRI) SPring‐8, 1‐1‐1 Kouto Sayo‐gun Hyogo 6795198 Japan

3. Institute for Materials Research Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai 9808577 Japan

4. Department of Applied Chemistry for Environment Graduate School of Urban Environmental Sciences Tokyo Metropolitan University 1‐1 Minami‐Osawa Hachioji Tokyo 1920397 Japan

5. Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1‐1 Minami‐Osawa Hachioji Tokyo 1920397 Japan

6. Elements Strategy Initiative for Catalysts & Batteries (ESICB) Kyoto University Katsura, Nishikyo‐ku Kyoto 6158245 Japan

7. Department of Molecular Engineering Graduate school of Engineering Kyoto University Nishikyo‐ku Kyoto 6158510 Japan

8. Living Systems Materialogy (LiSM) Research Group International Research Frontiers Initiative (IRFI) Tokyo Institute of Technology Yokohama 2268501 Japan

9. Kanagawa Institute of Industrial Science and Technology (KISTEC) 705‐1 Shimoimaizumi Ebina Kanagawa 2430435 Japan

10. Faculty of Materials Science and Engineering Kyoto Institute of Technology Matsugasaki Sakyo‐ku Kyoto 6068585 Japan

Abstract

AbstractDetermination of a reaction pathway is an important issue for the optimization of reactions. However, reactions in solid‐state compounds have remained poorly understood because of their complexity and technical limitations. Here, using state‐of‐the‐art high‐speed time‐resolved synchrotron X‐ray techniques, the topochemical solid‐gas reduction mechanisms in layered perovskite Sr3Fe2O7−δ (from δ ∼ 0.4 to δ = 1.0), which is promising for an environmental catalyst material is revealed. Pristine Sr3Fe2O7−δ shows a gradual single‐phase structural evolution during reduction, indicating that the reaction continuously proceeds through thermodynamically stable phases. In contrast, a nonequilibrium dynamically‐disordered phase emerges a few seconds before a first‐order transition during the reduction of a Pd‐loaded sample. This drastic change in the reaction pathway can be explained by a change in the rate‐determining step. The synchrotron X‐ray technique can be applied to various solid‐gas reactions and provides an opportunity for gaining a better understanding and optimizing reactions in solid‐state compounds.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3