Concentrated Solar Light Photoelectrochemical Water Splitting for Stable and High‐Yield Hydrogen Production

Author:

Dong Wan Jae1ORCID,Ye Zhengwei1,Tang Songtao1,Navid Ishtiaque Ahmed1,Xiao Yixin1,Zhang Bingxing1,Pan Yuyang1,Mi Zetian1ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science University of Michigan 1301 Beal Avenue Ann Arbor MI 48109 USA

Abstract

AbstractPhotoelectrochemical water splitting is a promising technique for converting solar energy into low‐cost and eco‐friendly H2 fuel. However, the production rate of H2 is limited by the insufficient number of photogenerated charge carriers in the conventional photoelectrodes under 1 sun (100 mW cm−2) light. Concentrated solar light irradiation can overcome the issue of low yield, but it leads to a new challenge of stability because the accelerated reaction alters the surface chemical composition of photoelectrodes. Here, it is demonstrated that loading Pt nanoparticles (NPs) on single crystalline GaN nanowires (NWs) grown on n+‐p Si photoelectrode operates efficiently and stably under concentrated solar light. Although a large number of Pt NPs detach during the initial reaction due to H2 gas bubbling, some Pt NPs which have an epitaxial relation with GaN NWs remain stably anchored. In addition, the stability of the photoelectrode further improves by redepositing Pt NPs on the reacted Pt/GaN surface, which results in maintaining onset potential >0.5 V versus reversible hydrogen electrode and photocurrent density >60 mA cm−2 for over 1500 h. The heterointerface between Pt cocatalysts and single crystalline GaN nanostructures shows great potential in designing an efficient and stable photoelectrode for high‐yield solar to H2 conversion.

Funder

Army Research Office

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3