Toughening Self‐Healing Elastomers with Chain Mobility

Author:

Tan Matthew Wei Ming12,Thornton Patrick Michael3,Thangavel Gurunathan1,Bark Hyunwoo1,Dauskardt Reinhold3,Lee Pooi See12ORCID

Affiliation:

1. School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore

2. Singapore‐HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR) Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602 Singapore

3. Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA

Abstract

AbstractEnhancing fracture toughness and self‐healing within soft elastomers is crucial to prolonging the operational lifetimes of soft devices. Herein, it is revealed that tuning the polymer chain mobilities of carboxylated‐functionalized polyurethane through incorporating plasticizers or thermal treatment can enhance these properties. Self‐healing is promoted as polymer chains gain greater mobility toward the broken interface to reassociate their bonds. Raising the temperature from 80 to 120 °C, the recovered work of fracture is increased from 2.86 to 123.7 MJ m−3. Improved fracture toughness is realized through two effects. First, strong carboxyl hydrogen bonds dissipate large energies when broken. Second, chain mobilities enable the redistribution of localized stress concentrations to allow crack blunting, enlarging the size of dissipation zones. At optimal conditions of plasticizers (3 wt.%) or temperature (40 °C) to promote chain mobilities, fracture toughness improves from 16.3 to 19.9 and 25.6 kJ m−2, respectively. Insights of fracture properties at healed soft interfaces are revealed through double cantilever beam tests. These measurements indicate that fracture mechanics play a critical role in delaying complete failure at partial self‐healing. By imparting optimal polymer chain mobilities within tough and self‐healing elastomers, effective prevention against damage and better recovery are realized.

Funder

National Research Foundation Singapore

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3