Sequential Deactivation Across the Hippocampus‐Thalamus‐mPFC Pathway During Loss of Consciousness

Author:

Chen Xiaoai1,Cramer Samuel R.2,Chan Dennis C.Y.1,Han Xu1,Zhang Nanyin1234ORCID

Affiliation:

1. Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA

2. The Neuroscience Graduate Program The Huck Institutes of the Life Sciences The Pennsylvania State University University Park PA 16802 USA

3. Center for Neurotechnology in Mental Health Research The Pennsylvania State University University Park PA 16802 USA

4. Center for Neural Engineering The Pennsylvania State University University Park PA 16802 USA

Abstract

AbstractHow consciousness is lost in states such as sleep or anesthesia remains a mystery. To gain insight into this phenomenon, concurrent recordings of electrophysiology signals in the anterior cingulate cortex and whole‐brain functional magnetic resonance imaging (fMRI) are conducted in rats exposed to graded propofol, undergoing the transition from consciousness to unconsciousness. The results reveal that upon the loss of consciousness (LOC), there is a sharp increase in low‐frequency power of the electrophysiological signal. Additionally, fMRI signals exhibit a cascade of deactivation across a pathway including the hippocampus, thalamus, and medial prefrontal cortex (mPFC) surrounding the moment of LOC, followed by a broader increase in brain activity across the cortex during sustained unconsciousness. Furthermore, sliding window analysis demonstrates a temporary increase in synchrony of fMRI signals across the hippocampus‐thalamus‐mPFC pathway preceding LOC. These data suggest that LOC may be triggered by sequential activities in the hippocampus, thalamus, and mPFC, while wide‐spread activity increases in other cortical regions commonly observed during anesthesia‐induced unconsciousness may be a consequence, rather than a cause of LOC. Taken together, the study identifies a cascade of neural events unfolding as the brain transitions into unconsciousness, offering insight into the systems‐level neural mechanisms underpinning LOC.

Funder

National Institute of General Medical Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3