Affiliation:
1. Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710129 China
Abstract
Abstract2D materials, such as graphene, transition metal dichalcogenides, black phosphorus, layered double hydroxides, and MXene, have exhibited broad application prospects in electrochemical energy conversion due to their unique structures and electronic properties. Recently, the engineering of heterostructures based on 2D materials, including 2D/0D, 2D/1D, 2D/2D, and 2D/3D, has shown the potential to produce synergistic and heterointerface effects, overcoming the inherent restrictions of 2D materials and thus elevating the electrocatalytic performance to the next level. In this review, recent studies are systematically summarized on heterostructures based on 2D materials for advanced electrochemical energy conversion, including water splitting, CO2 reduction reaction, N2 reduction reaction, etc. Additionally, preparation methods are introduced and novel properties of various types of heterostructures based on 2D materials are discussed. Furthermore, the reaction principles and intrinsic mechanisms behind the excellent performance of these heterostructures are evaluated. Finally, insights are provided into the challenges and perspectives regarding the future engineering of heterostructures based on 2D materials for further advancements in electrochemical energy conversion.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献