Biomimetic and NOS‐Responsive Nanomotor Deeply Delivery a Combination of MSC‐EV and Mitochondrial ROS Scavenger and Promote Heart Repair and Regeneration

Author:

Zhang Ning1,Fan Mengkang2,Zhao Yongchao3,Hu Xiaolong1,Zhu Qiongjun1,Jiao Xiaolu1,Lv Qingbo1,Li Duanbin1,Huang Zheyong3,Fu Guosheng1,Ge Junbo3,Li Hongjun4ORCID,Zhang Wenbin1

Affiliation:

1. Department of Cardiology Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China

2. Department of Cardiology Affiliated Hospital of Nantong University Nantong 226001 China

3. Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai 200032 China

4. College of Pharmaceutical Sciences Zhejiang Laboratory of Systems and Precision Medicine Zhejiang University Hangzhou 310012 China

Abstract

AbstractMesenchymal stem cell‐derived extracellular vesicle (MSC‐EV) is shown to promote cardiac repair, however, it still falls short in initiating myocardia proliferation restart. In this regard, ROS‐induced DNA damage and responses are the culprit of cellcycle arrest. Here, this work constructs a hybrid cell‐derived extracellular vesicle that is composed of MSC and macrophage membranes and encompasses MitoN, a ROS scavenger, to boost the healing of the heart. The MitoN, a NAD(P)H mimic, could target the mitochondrial to eliminate the ROS resuming the arrested cell cycle. The hybrid extracellular vesicle (N@MEV) could respond to the inflammatory signals generated during myocardial injury and thus enable superior targeting and enrichment to the location of the damage. L‐arginine, which could be catalyzed by NOS and ROS into NO and SO provide a driving force, is immobilized within the vesicle (NA@MEV) to further enhance the N@MEV's potential to penetrate the cardiac stroma. In combination with multiple mechanisms, NA@MEV increased heart function 1.3‐fold EF% versus MSC‐EV in mouse myocardial injury model. A more in‐depth mechanistic study found that the NA@MEV could modulate M2 macrophage; promote angiogenesis; reduce DNA damage and response, and thereby restart cardiomyocyte proliferation. Thus, this combined therapy shows synthetic effects in heart repair and regeneration.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3