Induced Manipulation of Atomically Dispersed Cobalt through S Vacancy for Photocatalytic Water Splitting: Asymmetric Coordination and Dynamic Evolution

Author:

Chen Meixue1,Li Minhao1,Zhang Shuqu1ORCID,Liu Xia2,Yang Lixia1,Song Ren‐Jie1,Zou Jian‐Ping1,Luo Shenglian1

Affiliation:

1. Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse Nanchang Hangkong University Nanchang Jiangxi Province 330063 P. R. China

2. College of Chemistry and Chemical Engineering Qingdao University Qingdao Shandong Province 266071 P. R. China

Abstract

AbstractIt is still a challenge to construct single‐atom level reduction and oxidation sites in single‐component photocatalyst by manipulating coordination configuration for photocatalytic water splitting. Herein, the atomically dispersed asymmetric configuration of six‐coordinated Co‐S2O4 (two exposed S atoms, two OH groups, and two Co─O─Zn bonds) suspending on ZnIn2S4 nanosheets verified by combining experimental analysis with theoretical calculation, is applied into photocatalytic water splitting. The Co‐S2O4 site immobilized by Vs acts as oxidation sites to guide electrons transferring to neighboring independent S atom, achieving efficient separation of reduction and oxidation sites. It is worth mentioning that stabilized Co‐S2O4 configuration show dynamic structure evolution to highly active Co‐S1O4 configuration (one exposed S atom, one OH group, and three Co─O─Zn bonds) in reaction, which lowers energy barrier of transition state for H2O activization. Ultimately, the optimized photocatalyst exhibits excellent photocatalytic activity for water splitting (H2: 80.13 µmol g−1 h−1, O2: 37.81 µmol g−1 h−1) and outstanding stability than that of multicomponent photocatalysts due to dynamic and reversible evolution between stable Co‐S2O4 configuration and active Co‐S1O4 configuration. This work demonstrates new cognitions on immobilized strategy through vacancy inducing, manipulating coordination configuration, and dynamic evolution mechanism of single‐atom level catalytic site in photocatalytic water splitting.

Funder

National Natural Science Foundation of China

Youth Science Foundation of Jiangxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3