Reversible Snapping of Constrained Anisotropic Hydrogels Upon Light Stimulations

Author:

Dai Chen Fei1,Zhu Qing Li1,Khoruzhenko Olena2,Thelen Michael2,Bai Huiying1,Breu Josef2ORCID,Du Miao1,Zheng Qiang1,Wu Zi Liang1ORCID

Affiliation:

1. Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310058 China

2. Bavarian Polymer Institute and Department of Chemistry University of Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany

Abstract

AbstractCreatures, such as Venus flytrap and hummingbirds, capable of rapid predation through snap‐through transition, provide paradigms for the design of soft actuators and robots with fast actions. However, these artificial “snappers” usually need contact stimulations to trigger the flipping. Reported here is a constrained anisotropic poly(N‐isopropylacrylamide) hydrogel showing fast snapping upon light stimulation. This hydrogel is prepared by flow‐induced orientation of nanosheets (NSs) within a rectangular tube. The precursor containing gold nanoparticles is immediately exposed to UV light for photopolymerization to fix the ordered structure of NSs. Two ends of the slender gel are clamped to form a buckle with bistability nature, which snaps to the other side upon laser irradiation. Systematic experiments are conducted to investigate the influences of power intensity and irradiation angle of the laser, as well as thickness and buckle height of the gel, on the snapping behaviors. The fast snapping is further used to kick a plastic bead and control the switch state. Furthermore, synergetic or oscillated snapping of the gel with two buckles of opposite directions is realized by inclined irradiation of a laser or horizontal irradiation with two lasers, respectively. Such light‐steered snapping of hydrogels should merit designing soft robots, energy harvests, etc.

Funder

National Natural Science Foundation of China

Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3