Suppressed Lone Pair Electrons Explain Unconventional Rise of Lattice Thermal Conductivity in Defective Crystalline Solids

Author:

Jang Hanhwi1,Toriyama Michael Y.2,Abbey Stanley3,Frimpong Brakowaa3,Snyder G. Jeffrey2,Jung Yeon Sik1,Oh Min‐Wook3ORCID

Affiliation:

1. Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea

2. Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA

3. Department of Materials Science and Engineering Hanbat National University Yuseong‐gu Daejeon 34158 Republic of Korea

Abstract

AbstractManipulating thermal properties of materials can be interpreted as the control of how vibrations of atoms (known as phonons) scatter in a crystal lattice. Compared to a perfect crystal, crystalline solids with defects are expected to have shorter phonon mean free paths caused by point defect scattering, leading to lower lattice thermal conductivities than those without defects. While this is true in many cases, alloying can increase the phonon mean free path in the Cd‐doped AgSnSbSe3 system to increase the lattice thermal conductivity from 0.65 to 1.05 W m−1 K−1 by replacing 18% of the Sb sites with Cd. It is found that the presence of lone pair electrons leads to the off‐centering of cations from the centrosymmetric position of a cubic lattice. X‐ray pair distribution function analysis reveals that this structural distortion is relieved when the electronic configuration of the dopant element cannot produce lone pair electrons. Furthermore, a decrease in the Grüneisen parameter with doping is experimentally confirmed, establishing a relationship between the stereochemical activity of lone pair electrons and the lattice anharmonicity. The observed “harmonic” behavior with doping suggests that lone pair electrons must be preserved to effectively suppress phonon transport in these systems.

Funder

Ministry of Science and ICT, South Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3