Identifying Stable Electrocatalysts Initialized by Data Mining: Sb2WO6 for Oxygen Reduction

Author:

Jia Xue1,Yu Zixun12,Liu Fangzhou2,Liu Heng1,Zhang Di13,Campos dos Santos Egon1,Zheng Hao1,Hashimoto Yusuke4,Chen Yuan2,Wei Li2,Li Hao1ORCID

Affiliation:

1. Advanced Institute for Materials Research (WPI‐AIMR) Tohoku University Sendai 980‐8577 Japan

2. School of Chemical and Biomolecule Engineering The University of Sydney Darlington NSW 2006 Australia

3. State Key Laboratory of Mechanical System and Vibration Shanghai Jiao Tong University Shanghai 200240 P. R. China

4. Tohoku Forum for Creativity Tohoku University Sendai 980‐8577 Japan

Abstract

AbstractData mining from computational materials database has become a popular strategy to identify unexplored catalysts. Herein, the opportunities and challenges of this strategy are analyzed by investigating a discrepancy between data mining and experiments in identifying low‐cost metal oxide (MO) electrocatalysts. Based on a search engine capable of identifying stable MOs at the pH and potentials of interest, a series of MO electrocatalysts is identified as potential candidates for various reactions. Sb2WO6 attracted the attention among the identified stable MOs in acid. Based on the aqueous stability diagram, Sb2WO6 is stable under oxygen reduction reaction (ORR) in acidic media but rather unstable under high‐pH ORR conditions. However, this contradicts to the subsequent experimental observation in alkaline ORR conditions. Based on the post‐catalysis characterizations, surface state analysis, and an advanced pH‐field coupled microkinetic modeling, it is found that the Sb2WO6 surface will undergo electrochemical passivation under ORR potentials and form a stable and 4e‐ORR active surface. The results presented here suggest that though data mining is promising for exploring electrocatalysts, a refined strategy needs to be further developed by considering the electrochemistry‐induced surface stability and activity.

Funder

Japan Society for the Promotion of Science

China Scholarship Council

Hirose Foundation

Iwatani Naoji Foundation

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3