Arginine‐Rich Cell‐Penetrating Peptides Induce Lipid Rearrangements for Their Active Translocation across Laterally Heterogeneous Membranes

Author:

Park Sujin1ORCID,Kim Jinmin2,Oh Seung Soo23ORCID,Choi Siyoung Q.1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea

2. Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea

3. Institute for Convergence Research and Education in Advanced Technology (I‐CREATE) Yonsei University Incheon 21983 Republic of Korea

Abstract

AbstractArginine‐rich cell‐penetrating peptides (CPPs) have emerged as valuable tools for the intracellular delivery of bioactive molecules, but their membrane perturbation during cell penetration is not fully understood. Here, nona‐arginine (R9)‐mediated membrane reorganization that facilitates the translocation of peptides across laterally heterogeneous membranes is directly visualized. The electrostatic binding of cationic R9 to anionic phosphatidylserine (PS)‐enriched domains on a freestanding lipid bilayer induces lateral lipid rearrangements; in particular, in real‐time it is observed that R9 fluidizes PS‐rich liquid‐ordered (Lo) domains into liquid‐disordered (Ld) domains, resulting in the membrane permeabilization. The experiments with giant unilamellar vesicles (GUVs) confirm the preferential translocation of R9 through Ld domains without pore formation, even when Lo domains are more negatively charged. Indeed, whenever R9 comes into contact with negatively charged Lo domains, it dissolves the Lo domains first, promoting translocation across phase‐separated membranes. Collectively, the findings imply that arginine‐rich CPPs modulate lateral membrane heterogeneity, including membrane fluidization, as one of the fundamental processes for their effective cell penetration across densely packed lipid bilayers.

Funder

Ministry of Science and ICT, South Korea

Ministry of Health and Welfare

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3