Affiliation:
1. Academy for Engineering and Technology Fudan University Shanghai 200433 China
2. School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China
3. Institute for Electric Light Sources Fudan University Shanghai 200433 China
4. College of Electronic and Optical Engineering Nanjing University of Posts and Telecommunications Nanjing 210023 China
5. Electronic Components Technology and Materials Delft University of Technology Delft 2628 CD Netherlands
Abstract
AbstractSulfide minerals hold significant importance in both fundamental science and industrial advancement. However, certain natural sulfide minerals, such as NaFe3S5·2H2O (NFS), pose great challenges for exploitation and synthesis due to their high susceptibility to oxidation. To date, no successful precedent exists for synthesizing NFS. Here, a novel approach to synthesizing low‐cost and pollution‐free NFS with high stability using the high‐pressure hydrothermal method based solely on knowledge of its chemical formula is presented. Moreover, an innovative strategy inspired by the cicada's molting process to develop unstable natural materials is proposed. The mechanical, thermal, optical, electrochemical, and magnetic properties of the NFS are thoroughly investigated. The storage of lithium, sodium, and potassium ions is primarily concentrated in the gap between (0 0 1) crystal planes. Additionally, as a catalyst for hydrogen evolution reaction (HER) at 10 mA cm−2, micron‐sized NFS exhibits an excellent overpotential of 6.5 mV at 90 °C, surpassing those of reported HER catalysts of similar size. This research bridges the gap in the sulfide mineral family, overcomes limitations of the high‐pressure hydrothermal method, and paves the way for future synthesis of natural minerals, lunar minerals, and Martian minerals.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献