Why Hydrogen Dissociation Catalysts do not Work for Hydrogenation of Magnesium

Author:

Kazaz Selim12ORCID,Billeter Emanuel12ORCID,Longo Filippo12ORCID,Borgschulte Andreas12ORCID,Łodziana Zbigniew3ORCID

Affiliation:

1. Laboratory for Advanced Analytical Technologies Swiss Federal Laboratories for Materials Science and Technology Empa Überlandstrasse 129 Dübendorf CH‐8600 Switzerland

2. Department of Chemistry University of Zurich Winterthurerstrasse 190 Zürich CH‐8057 Switzerland

3. Institute of Nuclear Physics Polish Academy of Sciences Krakow PL‐31342 Poland

Abstract

AbstractProvision of atomic hydrogen by hydrogen dissociation catalysts only moderately accelerates the hydrogenation rate of magnesium. They shed light on this well‐known but technically challenging fact through a combined approach using an unconventional surface science technique together with Density Functional Theory (DFT) calculations. The calculations demonstrate the drastic electronic structure changes during transformation of Mg to MgH2, which make fractional hydrogen coverage on the surface, as well as substoichiometric hydrogen content in the bulk energetically unfavorable. Reflecting Electron Energy Loss Spectroscopy (REELS) is used to measure the surface and bulk plasmon during hydrogen sorption in magnesium. The measurements show that the hydrogenation proceeds via the growth of magnesium hydride without the presence of chemisorbed hydrogen on the metallic magnesium surface exactly as indicated by the calculations. This is due to the low stability of sub‐stoichiometric amounts of chemisorbed H correlating with the unfavorable charge state of Mg. They are merely bound to the unchanged adjacent Mg layers, thereby explaining the failure of classical hydrogenation catalysts, which effectively only hydrogenate Mg in their direct vicinity. The acceleration of hydrogen sorption kinetics in Mg must affect the polarization in the interface between Mg and MgH2 during hydrogenation.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Academic Computer Centre Cyfronet, AGH University of Science and Technology

UZH Foundation

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3