Mfn2/Hsc70 Complex Mediates the Formation of Mitochondria‐Lipid Droplets Membrane Contact and Regulates Myocardial Lipid Metabolism

Author:

Hu Lang1,Tang Daishi2,Qi Bingchao1,Guo Dong1,Wang Ying1,Geng Jing1,Zhang Xiaoliang1,Song Liqiang3,Chang Pan4,Chen Wensheng5,Fu Feng6,Li Yan1ORCID

Affiliation:

1. Department of Cardiology Tangdu Hospital Airforce Medical University Xi'an 710032 China

2. Digestive System Department Shaanxi Provincial Crops Hospital of Chinese People's Armed Police Force Xi'an 710032 China

3. Department of Respirology Xijing Hospital Airforce Medical University Xi'an 710032 China

4. Department of Cardiology The Second Affiliated Hospital of Xi'an Medical College Xi'an 710032 China

5. Department of Cardiovascular Surgery Xi'an Gaoxin Hospital Xi'an 710032 China

6. Department of Physiology and Pathophysiology Airforce Medical University Xi'an 710032 China

Abstract

AbstractThe heart primarily derives its energy through lipid oxidation. In cardiomyocytes, lipids are stored in lipid droplets (LDs) and are utilized in mitochondria, although the structural and functional connections between these two organelles remain largely unknown. In this study, visible evidence have presented indicating that a complex is formed at the mitochondria‐LD membrane contact (MLC) site, involving mitochondrion‐localized Mfn2 and LD‐localized Hsc70. This complex serves to tether mitochondria to LDs, facilitating the transfer of fatty acids (FAs) from LDs to mitochondria for β‐oxidation. Reduction of Mfn2 induced by lipid overload inhibits MLC, hinders FA transfer, and results in lipid accumulation. Restoring Mfn2 reinstates MLC, alleviating myocardial lipotoxicity under lipid overload conditions both in‐vivo and in‐vitro. Additionally, prolonged lipid overload induces Mfn2 degradation through the ubiquitin‐proteasome pathway, following Mfn2 acetylation at the K243 site. This leads to the transition from adaptive lipid utilization to maladaptive lipotoxicity. The experimental findings are supported by clinical data from patients with obesity and age‐matched non‐obese individuals. These translational results make a significant contribution to the molecular understanding of MLC in the heart, and offer new insights into its role in myocardial lipotoxicity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3