Native Capillary Electrophoresis–Mass Spectrometry of Near 1 MDa Non‐Covalent GroEL/GroES/Substrate Protein Complexes

Author:

Marie Anne‐Lise1ORCID,Georgescauld Florian1,Johnson Kendall R.1,Ray Somak1,Engen John R.1,Ivanov Alexander R.1ORCID

Affiliation:

1. Barnett Institute of Chemical and Biological Analysis Department of Chemistry and Chemical Biology Northeastern University 360 Huntington Avenue Boston MA 02115 USA

Abstract

AbstractProtein complexes are essential for proteins' folding and biological function. Currently, native analysis of large multimeric protein complexes remains challenging. Structural biology techniques are time‐consuming and often cannot monitor the proteins' dynamics in solution. Here, a capillary electrophoresis‐mass spectrometry (CE–MS) method is reported to characterize, under near‐physiological conditions, the conformational rearrangements of ∽1 MDa GroEL upon complexation with binding partners involved in a protein folding cycle. The developed CE–MS method is fast (30 min per run), highly sensitive (low‐amol level), and requires ∽10 000‐fold fewer samples compared to biochemical/biophysical techniques. The methods successfully separates GroEL14 (∽800 kDa), GroEL7 (∽400 kDa), GroES7 (∽73 kDa), and NanA4 (∽130 kDa) oligomers. The non‐covalent binding of natural substrate proteins with GroEL14 can be detected and quantified. The technique allows monitoring of GroEL14 conformational changes upon complexation with (ATPγS)4–14 and GroES7 (∽876 kDa). Native CE‐pseudo‐MS3 analyses of wild‐type (WT) GroEL and two GroEL mutants result in up to 60% sequence coverage and highlight subtle structural differences between WT and mutated GroEL. The presented results demonstrate the superior CE–MS performance for multimeric complexes' characterization versus direct infusion ESI–MS. This study shows the CE–MS potential to provide information on binding stoichiometry and kinetics for various protein complexes.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3