Affiliation:
1. Key Laboratory of Carbon Materials of Zhejiang Province Wenzhou Key Lab of Advanced Energy Storage and Conversion Zhejiang Province Key Lab of Leather Engineering College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 P. R. China
2. Shenzhen Key Laboratory for Additive Manufacturing of High‐performance Materials Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen 518055 P. R. China
3. Shenzhen Key Laboratory of Flexible Printed Electronics Technology Center Harbin Institute of Technology Shenzhen 518055 P. R. China
Abstract
AbstractPorous metal foams (e.g., Ni/Cu/Ti) are applied as catalyst supports extensively for water splitting due to their large specific area and excellent conductivity, however, intrinsic bubble congestion is unavoidable because of the irregular three‐dimensional (3D) networks, resulting in high polarization and degraded electrocatalytic performances. To boost the H2O decomposition kinetics, the immediate bubble removal and water supply sequential in the gas–liquid–solid interface is essential. Inspired by the high efficiency of water/nutrient transport in the capillaries plants, this work designs a graphene‐based capillary array with side holes as catalyst support to manage the bubble release and water supply via a Z‐axis controllable digital light processing (DLP) 3D printing technology. Like planting rice, a low‐cost, high‐active CoNi carbonate hydroxide (CoNiCH) is planted on support. A homemade cell can reach 10 mA cm−2 in 1.51 V, and be kept at 30 mA cm−2 for 60 h without noticeable degradation, surpassing most of the known cells. This research provides a promising avenue to design and prepare advanced catalysts in various fields, including energy applications, pollutant treatment, and chemical synthesis.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献