Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid‐Phase Transmission Electron Microscopy

Author:

Couasnon Thaïs1ORCID,Fritsch Birk234ORCID,Jank Michael P. M.5ORCID,Blukis Roberts16ORCID,Hutzler Andreas24ORCID,Benning Liane G.17ORCID

Affiliation:

1. GFZ German Research Center for Geosciences Telegrafenberg 14473 Potsdam Germany

2. Department of Electrical, Electronic, and Communication Engineering Electron Devices Friedrich‐Alexander‐Universität Erlangen‐Nürnberg 91058 Erlangen Germany

3. Department of Materials Science and Engineering Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM) Friedrich‐Alexander‐Universität Erlangen‐Nürnberg 91058 Erlangen Germany

4. Forschungszentrum Jülich GmbH Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11) 91058 Erlangen Germany

5. Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystr. 10 91058 Erlangen Germany

6. Leibniz‐Institut für Kristallzüchtung Max‐Born Str. 2 12489 Berlin Germany

7. Department of Earth Sciences Freie Universität Berlin 12249 Berlin Germany

Abstract

AbstractLiquid‐Phase Transmission Electron Microscopy (LP‐TEM) enables in situ observations of the dynamic behavior of materials in liquids at high spatial and temporal resolution. During LP‐TEM, incident electrons decompose water molecules into highly reactive species. Consequently, the chemistry of the irradiated aqueous solution is strongly altered, impacting the reactions to be observed. However, the short lifetime of these reactive species prevent their direct study. Here, the morphological changes of goethite during its dissolution are used as a marker system to evaluate the influence of radiation on the changes in solution chemistry. At low electron flux density, the morphological changes are equivalent to those observed under bulk acidic conditions, but the rate of dissolution is higher. On the contrary, at higher electron fluxes, the morphological evolution does not correspond to a unique acidic dissolution process. Combined with kinetic simulations of the steady state concentrations of generated reactive species in the aqueous medium, the results provide a unique insight into the redox and acidity interplay during radiation induced chemical changes in LP‐TEM. The results not only reveal beam‐induced radiation chemistry via a nanoparticle indicator, but also open up new perspectives in the study of the dissolution process in industrial or natural settings.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3