Affiliation:
1. Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing Hubei Provincial Key Laboratory of Green Materials for Light Industry School of Materials and Chemical Engineering Hubei University of Technology Wuhan 430068 P. R. China
2. Hubei Longzhong Laboratory Xiang Yang Hubei 441000 P. R. China
3. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
4. School of Chemistry and Materials Science Hubei Engineering University XiaoGan 432000 P. R. China
Abstract
AbstractApplication of aqueous zinc metal batteries (AZMBs) in large‐scale new energy systems (NESs) is challenging owing to the growth of dendrites and frequent side reactions. Here, this study proposes the use of Panthenol (PB) as an electrolyte additive in AZMBs to achieve highly reversible zinc plating/stripping processes and suppressed side reactions. The PB structure is rich in polar groups, which led to the formation of a strong hydrogen bonding network of PB−H2O, while the PB molecule also builds a multi‐coordination solvated structure, which inhibits water activity and reduces side reactions. Simultaneously, PB and OTF− decomposition, in situ formation of SEI layer with stable organic‐inorganic hybrid ZnF2‐ZnS interphase on Zn anode electrode, can inhibit water penetration into Zn and homogenize the Zn2+ plating. The effect of the thickness of the SEI layer on the deposition of Zn ions in the battery is also investigated. Hence, this comprehensive regulation strategy contributes to a long cycle life of 2300 h for Zn//Zn cells assembled with electrolytes containing PB additives. And the assembled Zn//NH4V4O10 pouch cells with homemade modules exhibit stable cycling performance and high capacity retention. Therefore, the proposed electrolyte modification strategy provides new ideas for AZMBs and other metal batteries.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province