KOH Activated Carbon Coated 3D Wood Solar Evaporator with Highest Water Transport Height and Evaporation Rate for Clean Water Production

Author:

Zhang Mengxue12ORCID,Hu Nan3,Guo Yang1,Wu Wenhao12,Fan Liwu4,Lin Daohui12,Wang Juan12ORCID,Yang Kun125ORCID

Affiliation:

1. Department of Environmental Science Zhejiang University Hangzhou 310058 P. R. China

2. Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control Zhejiang University Hangzhou 310058 P. R. China

3. Department of Mechanical and Aerospace Engineering Princeton University Princeton NJ 08544 USA

4. Institute of Thermal Science and Power Systems School of Energy Engineering Zhejiang University Hangzhou 310027 P. R. China

5. Zhejiang University‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311200 P. R. China

Abstract

AbstractThe water evaporation rate of 3D solar evaporator heavily relies on the water transport height of the evaporator. In this work, a 3D solar evaporator featuring a soil capillary‐like structure is designed by surface coating native balsa wood using potassium hydroxide activated carbon (KAC). This KAC‐coated wood evaporator can transport water up to 32 cm, surpassing that of native wood by ≈8 times. Moreover, under 1 kW m−2 solar radiation without wind, the KAC‐coated wood evaporator exhibits a remarkable water evaporation rate of 25.3 kg m−2 h−1, ranking among the highest compared with other reported evaporators. The exceptional water transport capabilities of the KAC‐coated wood should be attributed to the black and hydrophilic KAC film, which creates a porous network resembling a soil capillary structure to facilitate efficient water transport. In the porous network of coated KAC film, the small internal pores play a pivotal role in achieving rapid capillary condensation, while the larger interstitial channels store condensed water, further promoting water transport up more and micropore capillary condensation. Moreover, this innovative design demonstrates efficacy in retarding phenol from wastewater through absorption onto the coated KAC film, thus presenting a new avenue for high‐efficiency clean water production.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3