A Self‐Assembled MOF‐Escherichia Coli Hybrid System for Light‐Driven Fuels and Valuable Chemicals Synthesis

Author:

Li Jialu12,Shen Junfeng1,Hou Tianfeng1,Tang Hongting1,Zeng Cuiping1,Xiao Kemeng13,Hou Yanping2,Wang Bo1ORCID

Affiliation:

1. CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

2. School of Resources Environment and Materials Guangxi University Nanning 530004 China

3. Department of Chemistry and Center for Cell and Developmental Biology The Chinese University of Hong Kong Shatin Hong Kong 999077 China

Abstract

AbstractThe development of semi‐artificial photosynthetic systems, which integrate metal–organic frameworks (MOFs) with industrial microbial cell factories for light‐driven synthesis of fuels and valuable chemicals, represents a highly promising avenue for both research advancements and practical applications. In this study, an MOF (PCN‐222) utilizing racemic‐(4‐carboxyphenyl) porphyrin and zirconium chloride (ZrCl4) as primary constituents is synthesized. Employing a self‐assembly process, a hybrid system is constructed, integrating engineered Escherichia coli (E. coli) to investigate light‐driven hydrogen and lysine production. These results demonstrate that the light‐irradiated biohybrid system efficiently produce H2 with a quantum efficiency of 0.75% under full spectrum illumination, the elevated intracellular reducing power NADPH is also observed. By optimizing the conditions, the biohybrid system achieves a maximum lysine production of 18.25 mg L−1, surpassing that of pure bacteria by 332%. Further investigations into interfacial electron transfer mechanisms reveals that PCN‐222 efficiently captures light and facilitates the transfer of photo‐generated electrons into E. coli cells. It is proposed that the interfacial energy transfer process is mediated by riboflavin, with facilitation by secreted small organic acids acting as hole scavengers for PCN‐222. This study establishes a crucial foundation for future research into the light‐driven biomanufacturing using E. coli‐based hybrid systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3