Wearable All‐Fabric Hybrid Energy Harvester to Simultaneously Harvest Radiofrequency and Triboelectric Energy

Author:

Kou Zhenghao12ORCID,Zhang Chao12,Yu Buyun12,Chen Hao12,Liu Zhenguo123ORCID,Lu Weibing123

Affiliation:

1. State Key Laboratory of Millimeter Waves School of Information Science and Engineering Southeast University Nanjing 210096 P. R. China

2. Center for Flexible RF Technology Southeast University Nanjing 210096 P. R. China

3. Purple Mountain Laboratories Nanjing 210096 P. R. China

Abstract

AbstractDistributed micro‐energy harvesting devices offer the flexibility, sustainability, and multi‐scenario applicability that will be critical to wearable electronic products in the Internet of Things. The radiofrequency and triboelectric (RF‐TE) hybrid energy harvester (HEH) concept and prototype is presented for the first time, to simultaneously capture the energy from ambient electromagnetic waves and biological motions. The proposed hybrid energy harvesting system consists of a wearable rectenna, a triboelectric nanogenerator (TENG), and a power management circuit (PMC). Among them, the all‐fabric rectenna exhibits good impedance matching characteristics in the ISM frequency. The flexible TENG unit can generate a maximum power density of 0.024 µW cm−2. The designed multifunctional fabric‐based PMC can considerably enhance the controllability of harvested hybrid energy. Additionally, a normalizable fabric circuit board quasi surface mount technology (FCB‐SMT) is proposed to integrate all modules on the same fabric substrate in one step, making the entire system superior mechanical robustness. The proposed wearable fabric‐based RF‐TE hybrid energy harvester is capable of successfully driving consumer electronics (such as sensors, watches, etc.). It provides a new energy solution strategy for self‐powered wearable electronic devices and is anticipated to encourage the efficient utilization of renewable energy.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3