Activating One/Two‐Photon Excited Red Fluorescence on Carbon Dots: Emerging n→π Photon Transition Induced by Amino Protonation

Author:

Zhang Qing1ORCID,Wang Fengqing2,Wang Ruoyu1,Liu Junlan3,Ma Yupengxue1,Qin Xiaoru1,Zhong Xiaoxia1ORCID

Affiliation:

1. State Key Laboratory of Advanced Optical Communication Systems and Networks Key Laboratory for Laser Plasmas (Ministry of Education) School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 P. R. China

2. Department of Food Science and Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai 200240 P. R. China

3. Institute of Molecular Medicine (IMM) Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 P. R. China

Abstract

AbstractDue to the complicated nature of carbon dots (CDs), fluorescence mechanism of red fluorescent CDs is still unrevealed and features highly controversial. Reliable and effective strategies for manipulating the red fluorescence of CDs are urgently needed. Herein, CDs with one‐photon excited (622 nm, QYs ≈ 17%) and two‐photon (629 nm) excited red fluorescence are prepared by acidifying o‐phenylenediamine‐based reaction sediments. Systematic analysis reveals that the protonation of amino groups increases the particle surface potential, disperse the bulk sediments into nano‐scale CDs. In the meanwhile, amino protonation of pyridinic nitrogen (–N=) structure inserts numerous n orbital energy levels between the ππ* transition, narrows the gap distance for photon transition, and induces red fluorescence emission on CDs. Present research reveals an effective pathway to activate CDs reaction sediments and trigger red emission, thus may open a new avenue for developing CDs with ideal optical properties and promising application prospects.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3