Microporous Sulfur–Carbon Materials with Extended Sodium Storage Window

Author:

Eren Enis Oğuzhan1ORCID,Esen Cansu1,Scoppola Ernesto2,Song Zihan1,Senokos Evgeny1,Zschiesche Hannes1,Cruz Daniel34,Lauermann Iver5,Tarakina Nadezda V.1,Kumru Barış16,Antonietti Markus1,Giusto Paolo1ORCID

Affiliation:

1. Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany

2. Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany

3. Department of Inorganic Chemistry Fritz‐Haber‐Institut der Max‐Planck Gesellschaft 14195 Berlin Germany

4. Department of Heterogeneous Reactions Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany

5. PVcomB Helmholtz‐Zentrum Berlin für Materialien und Energie 12489 Berlin Germany

6. Aerospace Structures and Materials Department Faculty of Aerospace Engineering Delft University of Technology Delft 2629 HS The Netherlands

Abstract

AbstractDeveloping high‐performance carbonaceous anode materials for sodium‐ion batteries (SIBs) is still a grand quest for a more sustainable future of energy storage. Introducing sulfur within a carbon framework is one of the most promising attempts toward the development of highly efficient anode materials. Herein, a microporous sulfur‐rich carbon anode obtained from a liquid sulfur‐containing oligomer is introduced. The sodium storage mechanism shifts from surface‐controlled to diffusion‐controlled at higher synthesis temperatures. The different storage mechanisms and electrode performances are found to be independent of the bare electrode material's interplanar spacing. Therefore, these differences are attributed to an increased microporosity and a thiophene‐rich chemical environment. The combination of these properties enables extending the plateau region to higher potential and achieving reversible overpotential sodium storage. Moreover, in‐operando small‐angle X‐ray scattering (SAXS) reveals reversible electron density variations within the pore structure, in good agreement with the pore‐filling sodium storage mechanism occurring in hard carbons (HCs). Eventually, the depicted framework will enable the design of high‐performance anode materials for sodium‐ion batteries with competitive energy density.

Funder

HORIZON EUROPE European Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3