Compositionally Sequenced Interfacial Layers for High‐Energy Li‐Metal Batteries

Author:

Lee Jeong‐A1,Kim Saehun1,Cho Yoonhan2,Kweon Seong Hyeon3,Kang Haneul1,Byun Jeong Hwan1,Kwon Eunji4,Seo Samuel4,Kim Wonkeun4,Ryu Kyoung Han4,Kwak Sang Kyu5,Hong Seungbum2,Choi Nam‐Soon1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

2. Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

3. School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST‐gil Ulsan 44919 Republic of Korea

4. CTO Advanced Battery Development Hyundai motor company 37 Cheoldobangmulgwan‐ro Uiwang‐si Gyeonggi‐do 16082 Republic of Korea

5. Department of Chemical and Biological Engineering Korea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea

Abstract

AbstractElectrolyte additives with multiple functions enable the interfacial engineering of Li‐metal batteries (LMBs). Owing to their unique reduction behavior, additives exhibit a high potential for electrode surface modification that increases the reversibility of Li‐metal anodes by enabling the development of a hierarchical solid electrolyte interphase (SEI). This study confirms that an adequately designed SEI facilitates the homogeneous supply of Li+, nonlocalized Li deposition, and low electrolyte degradation in LMBs while enduring the volume fluctuation of Li‐metal anodes on cycling. An in‐depth analysis of interfacial engineering mechanisms reveals that multilayered SEI structures comprising mechanically robust LiF‐rich species, electron‐rich P–O species, and elastic polymeric species enabled the stable charge and discharge of LMBs. The polymeric outer SEI layer in the as‐fabricated multilayered SEI could accommodate the volume fluctuation of Li‐metal anodes, significantly enhancing the cycling stability Li||LiNi0.8Co0.1Mn0.1O2 full cells with an electrolyte amount of 3.6 g Ah−1 and an areal capacity of 3.2 mAh cm−2. Therefore, this study confirms the ability of interfacial layers formed by electrolyte additives and fluorinated solvents to advance the performance of LMBs and can open new frontiers in the fabrication of high‐performance LMBs through electrolyte‐formulation engineering.

Funder

Ministry of Science, ICT and Future Planning

Korea Institute of Science and Technology Information

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3