A Paramagnetic Metal‐Organic Framework Enhances Mild Magnetic Hyperthermia Therapy by Downregulating Heat Shock Proteins and Promoting Ferroptosis via Aggravation of Two‐Way Regulated Redox Dyshomeostasis

Author:

Wang Yi1,Chen Zelong1,Li Jiahui1,Wen Yafei1,Li Jiaxuan1,Lv Yinghua1,Pei Zhichao1,Pei Yuxin1ORCID

Affiliation:

1. College of Chemistry and Pharmacy Northwest A&F University Yangling Shaanxi 712100 P. R. China

Abstract

AbstractMild magnetic hyperthermia therapy (MMHT) holds great potential in treating deep‐seated tumors, but its efficacy is impaired by the upregulation of heat shock proteins (HSPs) during the treatment process. Herein, Lac‐FcMOF, a lactose derivative (Lac‐NH2) modified paramagnetic metal‐organic framework (FcMOF) with magnetic hyperthermia property and thermal stability, has been developed to enhance MMHT therapeutic efficacy. In vitro studies showed that Lac‐FcMOF aggravates two‐way regulated redox dyshomeostasis (RDH) via magnetothermal‐accelerated ferricenium ions‐mediated consumption of glutathione and ferrocene‐catalyzed generation of ∙OH to induce oxidative damage and inhibit heat shock protein 70 (HSP70) synthesis, thus significantly enhancing the anti‐cancer efficacy of MMHT. Aggravated RDH promotes glutathione peroxidase 4 inactivation and lipid peroxidation to promote ferroptosis, which further synergizes with MMHT. H22‐tumor‐bearing mice treated with Lac‐FcMOF under alternating magnetic field (AMF) demonstrated a 90.4% inhibition of tumor growth. This work therefore provides a new strategy for the simple construction of a magnetic hyperthermia agent that enables efficient MMHT by downregulating HSPs and promoting ferroptosis through the aggravation of two‐way regulated RDH.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3