Affiliation:
1. State Key Laboratory of Oral Diseases National Center for Stomatology National Clinical Research Center for Oral Diseases Department of Head and Neck Oncology West China Hospital of Stomatology Sichuan University Chengdu 610041 China
2. College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610054 China
Abstract
AbstractThe massive accumulation of exudate containing high concentrations of glucose causes wound infection and triggers the release of inflammatory factors, which in turn delays the closure of diabetic wounds. In this study, a Janus membrane is constructed by combining glucose oxidase (GOx) and copper ions (Cu2+) for the treatment of diabetic wounds, which is named as Janus@GOx/Cu2+. It consists of hydrophobic, transitional, and superhydrophilic layers in a three‐layer structure with gradient hydrophilicity for self‐pumping properties. The Janus@GOx/Cu2+ membrane triggers a series of cascading reactions while pumping out diabetic wound exudates. First, glucose oxidase loaded onto the hydrophilic layer of the Janus@GOx/Cu2+ membrane decomposes glucose into hydrogen peroxide (H2O2) and glucuronic acid, reducing the local glucose level. The generated glucuronic acid neutralizes the local alkaline environment of chronic wounds. Simultaneously, the H2O2 interacts with the Cu2+ contained in the hydrophobic layers of the Janus@GOx/Cu2+ membrane via a Fenton‐like reaction, generating hydroxyl radicals with excellent bactericidal properties. Cu2+ promotes angiogenesis and wound healing in diabetic wounds. Under the action of multiple responses, the Janus@GOx/Cu2+ membrane promotes wound healing in diabetic infections.
Funder
National Natural Science Foundation of China