A Multi‐Dimensional Approach to Map Disease Relationships Challenges Classical Disease Views

Author:

Möbus Lena1ORCID,Serra Angela123ORCID,Fratello Michele1ORCID,Pavel Alisa14ORCID,Federico Antonio123ORCID,Greco Dario135ORCID

Affiliation:

1. Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE) Faculty of Medicine and Health Technology Tampere University Tampere 33520 Finland

2. Tampere Institute for Advanced Study Tampere University Tampere 33520 Finland

3. Division of Pharmaceutical Biosciences Faculty of Pharmacy University of Helsinki Helsinki 00790 Finland

4. Applied Mathematics and Computer Science Technical University of Denmark Kongens Lyngby 2800 Denmark

5. Institute of Biotechnology University of Helsinki Helsinki 00790 Finland

Abstract

AbstractThe categorization of human diseases is mainly based on the affected organ system and phenotypic characteristics. This is limiting the view to the pathological manifestations, while it neglects mechanistic relationships that are crucial to develop therapeutic strategies. This work aims to advance the understanding of diseases and their relatedness beyond traditional phenotypic views. Hence, the similarity among 502 diseases is mapped using six different data dimensions encompassing molecular, clinical, and pharmacological information retrieved from public sources. Multiple distance measures and multi‐view clustering are used to assess the patterns of disease relatedness. The integration of all six dimensions into a consensus map of disease relationships reveals a divergent disease view from the International Classification of Diseases (ICD), emphasizing novel insights offered by a multi‐view disease map. Disease features such as genes, pathways, and chemicals that are enriched in distinct disease groups are identified. Finally, an evaluation of the top similar diseases of three candidate diseases common in the Western population shows concordance with known epidemiological associations and reveals rare features shared between Type 2 diabetes (T2D) and Alzheimer's disease. A revision of disease relationships holds promise for facilitating the reconstruction of comorbidity patterns, repurposing drugs, and advancing drug discovery in the future.

Funder

European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3