Photoswitchable Endocytosis of Biomolecular Condensates in Giant Vesicles

Author:

Mangiarotti Agustín1ORCID,Aleksanyan Mina12ORCID,Siri Macarena13ORCID,Sun Tsu‐Wang1ORCID,Lipowsky Reinhard1ORCID,Dimova Rumiana1ORCID

Affiliation:

1. Max Planck Institute of Colloids and Interfaces Science Park Golm 14476 Potsdam Germany

2. Institute for Chemistry and Biochemistry Free University of Berlin Takustraße 3 14195 Berlin Germany

3. Max Planck Queensland Centre Science Park Golm 14476 Potsdam Germany

Abstract

AbstractInteractions between membranes and biomolecular condensates can give rise to complex phenomena such as wetting transitions, mutual remodeling, and endocytosis. In this study, light‐triggered manipulation of condensate engulfment is demonstrated using giant vesicles containing photoswitchable lipids. UV irradiation increases the membrane area, which can be stored in nanotubes. When in contact with a condensate droplet, the UV light triggers rapid condensate endocytosis, which can be reverted by blue light. The affinity of the protein‐rich condensates to the membrane and the reversibility of the engulfment processes is quantified from confocal microscopy images. The degree of photo‐induced engulfment, whether partial or complete, depends on the vesicle excess area and the relative sizes of vesicles and condensates. Theoretical estimates suggest that utilizing the light‐induced excess area to increase the vesicle‐condensate adhesion interface is energetically more favorable than the energy gain from folding the membrane into invaginations and tubes. The overall findings demonstrate that membrane‐condensate interactions can be easily and quickly modulated via light, providing a versatile system for building platforms to control cellular events and design intelligent drug delivery systems for cell repair.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Membrane nanotubes transform into double-membrane sheets at condensate droplets;Proceedings of the National Academy of Sciences;2024-06-20

2. Materials evaluation using cell-sized liposomes;Analytical Methods;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3