Integrated In‐Memory Sensor and Computing of Artificial Vision Based on Full‐vdW Optoelectronic Ferroelectric Field‐Effect Transistor

Author:

Wang Peng1,Li Jie2,Xue Wuhong1,Ci Wenjuan1,Jiang Fengxian1,Shi Lei1,Zhou Feichi2,Zhou Peng3ORCID,Xu Xiaohong1ORCID

Affiliation:

1. Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science Shanxi Normal University Taiyuan 030031 China

2. School of Microelectronics Southern University of Science and Technology Shenzhen 518000 China

3. ASIC & System State Key Lab School of Microelectronics Fudan University Shanghai 200433 China

Abstract

AbstractThe development and application of artificial intelligence have led to the exploitation of low‐power and compact intelligent information‐processing systems integrated with sensing, memory, and neuromorphic computing functions. The 2D van der Waals (vdW) materials with abundant reservoirs for arbitrary stacking based on functions and enabling continued device downscaling offer an attractive alternative for continuously promoting artificial intelligence. In this study, full 2D SnS2/h‐BN/CuInP2S6 (CIPS)‐based ferroelectric field‐effect transistors (Fe‐FETs) and utilized light‐induced ferroelectric polarization reversal to achieve excellent memory properties and multi‐functional sensing‐memory‐computing vision simulations are designed. The device exhibits a high on/off current ratio of over 105, long retention time (>104 s), stable cyclic endurance (>350 cycles), and 128 multilevel current states (7‐bit). In addition, fundamental synaptic plasticity characteristics are emulated including paired‐pulse facilitation (PPF), short‐term plasticity (STP), long‐term plasticity (LTP), long‐term potentiation, and long‐term depression. A ferroelectric optoelectronic reservoir computing system for the Modified National Institute of Standards and Technology (MNIST) handwritten digital recognition achieved a high accuracy of 93.62%. Furthermore, retina‐like light adaptation and Pavlovian conditioning are successfully mimicked. These results provide a strategy for developing a multilevel memory and novel neuromorphic vision systems with integrated sensing‐memory‐processing.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3