Modulation of the Oxidation End‐Product Toward Polysulfides‐Free and Sustainable Lithium‐Pyrite Thermal Batteries

Author:

Jin Yang1ORCID,Lu Hongfei1ORCID,Lyu Nawei1,Zhang Di1,Jiang Xin1,Sun Bin1,Liu Kai2,Wu Hui3

Affiliation:

1. Research Center of Grid Energy Storage and Battery Application School of Electrical and Information Engineering Zhengzhou University Zhengzhou Henan 450001 P. R. China

2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources School of New Energy North China Electric Power University Beijing 102206 P. R. China

3. State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 P. R. China

Abstract

AbstractThe FeS2 has abundant reserves and a high specific capacity (894 mAh g−1), commonly used to fabricate Li‐FeS2 primary batteries, like LiMx‐FeS2 thermal batteries (working at ≈500 °C). However, Li–FeS2 batteries struggle to function as rechargeable batteries due to serious issues such as pulverization and polysulfide shuttling. Herein, highly reversible solid‐state Li‐FeS2 batteries operating at 300 °C are designed. Molten salt‐based FeS2 slurry cathodes address the notorious electrode pulverization problem by encapsulating pulverized particles in time with e and Li⁺ flow conductors. In addition, the solid electrolyte LLZTO tube serves as a hard separator and fast Li+ channel, effectively separating the molten electrodes to construct a liquid–solid–liquid structure instead of the solid–liquid–solid structure of LiMx‐FeS2 thermal batteries. Most importantly, these high‐temperature Li–FeS2 solid‐state batteries achieve FeS2 conversion to Li2S and Fe at discharge and further back to FeS2 at charge, unlike room‐temperature Li‐FeS2 batteries where FeS and S act as oxidation products. Therefore, these new‐type Li‐FeS2 batteries have a lower operating temperature than Li‐FeS2 thermal batteries and perform highly reversible electrochemical reactions, which can be cycled stably up to 2000 times with a high specific capacity of ≈750 mAh g−1 in the prototype batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3