Photothermal‐Triggered Sulfur Oxide Gas Therapy Augments Type I Photodynamic Therapy for Potentiating Cancer Stem Cell Ablation and Inhibiting Radioresistant Tumor Recurrence

Author:

Zhang Tianfu12,Pan You3,Suo Meng1,Lyu Meng4,Lam Jacky Wing Yip2,Jin Zhaokui1,Ning Shipeng3,Tang Ben Zhong25

Affiliation:

1. School of Biomedical Engineering Guangzhou Medical University Guangzhou 510182 China

2. Department of Chemistry the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong‐Hong Kong‐Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China

3. Guangxi Medical University Cancer Hospital Nanning 530000 China

4. Department of Gastrointestinal Surgery & Department of Geriatrics Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen Guangdong 518020 China

5. School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China

Abstract

AbstractDespite advances in cancer therapy, the existence of self‐renewing cancer stem cells (CSC) can lead to tumor recurrence and radiation resistance, resulting in treatment failure and high mortality in patients. To address this issue, a near‐infrared (NIR) laser‐induced synergistic therapeutic platform has been developed by incorporating aggregation‐induced emission (AIE)‐active phototheranostic agents and sulfur dioxide (SO2) prodrug into a biocompatible hydrogel, namely TBH, to suppress malignant CSC growth. Outstanding hydroxyl radical (·OH) generation and photothermal effect of the AIE phototheranostic agent actualizes Type I photodynamic therapy (PDT) and photothermal therapy through 660 nm NIR laser irradiation. Meanwhile, a large amount of SO2 is released from the SO2 prodrug in thermo‐sensitive TBH gel, which depletes upregulated glutathione in CSC and consequentially promotes ·OH generation for PDT enhancement. Thus, the resulting TBH hydrogel can diminish CSC under 660 nm laser irradiation and finally restrain tumor recurrence after radiotherapy (RT). In comparison, the tumor in the mice that were only treated with RT relapsed rapidly. These findings reveal a double‐boosting ·OH generation protocol, and the synergistic combination of AIE‐mediated PDT and gas therapy provides a novel strategy for inhibiting CSC growth and cancer recurrence after RT, which presents great potential for clinical treatment.

Funder

Natural Science Foundation of Guangxi Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3