Decolorization of Lignin for High‐Resolution 3D Printing of High Lignin‐Content Composites

Author:

Böcherer David1ORCID,Montazeri Ramin1,Li Yuanyuan1,Tisato Silvio2,Hambitzer Leonhard1,Helmer Dorothea12ORCID

Affiliation:

1. Department of Microsystems Engineering University of Freiburg 79110 Freiburg Germany

2. Freiburg Materials Research Center (FMF) University of Freiburg 79104 Freiburg Germany

Abstract

AbstractLignin, one of the most abundant biomaterials and a large‐scale industrial waste product, is a promising filler for polymers as it reduces the amount of fossil resources and is readily available. 3D printing is well‐known for producing detailed polymer structures in small sizes at low waste production. Especially light‐assisted 3D printing is a powerful technique for production of high‐resolution structures. However, lignin acts as a very efficient absorber for UV and visible light limiting the printability of lignin composites, reducing its potential as a high‐volume filler. In this work, the decolorization of lignin is presented for high‐resolution 3D printing of biocomposites with lignin content up to 40 wt.%. Organosolv lignin (OSL) is decolorized by an optimized low‐energy process of acetylation and subsequent UV irradiation reducing the UV absorbance by 71%. By integration of decolorized lignin into bio‐based tetrahydrofurfuryl acrylate (THFA), a lignin content of 40 wt.% and a resolution of 250 µm is achieved. Due to the reinforcing properties of lignin, the stiffness and strength of the material is increased by factors of 15 and 2.3, respectively. This work paves the way for the re‐use of a large amount of lignin waste for 3D printing of tough materials at high resolution.

Funder

Carl-Zeiss-Stiftung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3