Affiliation:
1. Faculty of Chemistry Theoretical Inorganic Chemistry University Duisburg‐Essen Universitätsstraße 5 45141 Essen Germany
2. Cluster of Excellence RESOLV 44801 Bochum Germany
3. Center for Nanointegration (CENIDE) Duisburg‐Essen 47057 Duisburg Germany
Abstract
AbstractSince the birth of the computational hydrogen electrode approach, it is considered that activity trends of electrocatalysts in a homologous series can be quantified by the construction of volcano plots. This method aims to steer materials discovery by the identification of catalysts with an improved reaction kinetics, though evaluated by means of thermodynamic descriptors. The conventional approach for the volcano plot of the oxygen evolution reaction (OER) relies on the assumption of the mononuclear mechanism, comprising the *OH, *O, and *OOH intermediates. In the present manuscript, two new mechanistic pathways, comprising the idea of the Walden inversion in that bond‐breaking and bond‐making occurs simultaneously, are factored into a potential‐dependent OER activity volcano plot. Surprisingly, it turns out that the Walden inversion plays an important role since the activity volcano is governed by mechanistic pathways comprising Walden steps rather than by the traditionally assumed reaction mechanisms under typical OER conditions.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献