Synthetic Collagen Hydrogels through Symmetric Self‐Assembly of Small Peptides

Author:

Tanrikulu I. Caglar1ORCID,Dang Lianna2ORCID,Nelavelli Lekha2,Ellison Aubrey J.2ORCID,Olsen Bradley D.3ORCID,Jin Song2ORCID,Raines Ronald T.1ORCID

Affiliation:

1. Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA

2. Department of Chemistry University of Wisconsin–Madison Madison WI 53706 USA

3. Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

Abstract

AbstractAnimal‐sourced hydrogels, such as collagen, are widely used as extracellular‐matrix (ECM) mimics in tissue engineering but are plagued with problems of reproducibility, immunogenicity, and contamination. Synthetic, chemically defined hydrogels can avoid such issues. Despite the abundance of collagen in the ECM, synthetic collagen hydrogels are extremely rare due to design challenges brought on by the triple‐helical structure of collagen. Sticky‐ended symmetric self‐assembly (SESSA) overcomes these challenges by maximizing interactions between the strands of the triple helix, allowing the assembly of collagen‐mimetic peptides (CMPs) into robust synthetic collagen nanofibers. This optimization, however, also minimizes interfiber contacts. In this work, symmetric association states for the SESSA of short CMPs to probe their increased propensity for interfiber association are modelled. It is found that 33‐residue CMPs not only self‐assemble through sticky ends, but also form hydrogels. These self‐assemblies behave with remarkable consistency across multiple scales and present a clear link between their triple‐helical architecture and the properties of their hydrogels. The results show that SESSA is an effective and robust design methodology that enables the rational design of synthetic collagen hydrogels.

Funder

National Science Foundation

National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Institute of General Medical Sciences

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3