Affiliation:
1. Department of Neurosurgery University of Michigan Medical School Ann Arbor Michigan 48108 USA
2. Department of Cell and Developmental Biology University of Michigan Medical School Ann Arbor Michigan 48108 USA
3. Rogel Cancer Centre University of Michigan Medical School Ann Arbor Michigan 48108 USA
4. Department of Statistics and Mathematical Sciences Arizona State University Tempe Arizona 85287 USA
5. Department of Biomedical Engineering University of Michigan Medical School Ann Arbor Michigan 48108 USA
Abstract
AbstractGlioblastoma (GBM) remains a challenge in Neuro‐oncology, with a poor prognosis showing only a 5% survival rate beyond two years. This is primarily due to its aggressiveness and intra‐tumoral heterogeneity, which limits complete surgical resection and reduces the efficacy of existing treatments. The existence of oncostreams—neuropathological structures comprising aligned spindle‐like cells from both tumor and non‐tumor origins‐ is discovered earlier. Oncostreams are closely linked to glioma aggressiveness and facilitate the spread into adjacent healthy brain tissue. A unique molecular signature intrinsic to oncostreams, with overexpression of key genes (i.e., COL1A1, ACTA2) that drive the tumor's mesenchymal transition and malignancy is also identified. Pre‐clinical studies on genetically engineered mouse models demonstrated that COL1A1 inhibition disrupts oncostreams, modifies TME, reduces mesenchymal gene expression, and extends survival. An in vitro model using GFP+ NPA cells to investigate how various treatments affect oncostream dynamics is developed. Analysis showed that factors such as cell density, morphology, neurotransmitter agonists, calcium chelators, and cytoskeleton‐targeting drugs influence oncostream formation. This data illuminate the patterns of glioma migration and suggest anti‐invasion strategies that can improve GBM patient outcomes when combined with traditional therapies. This work highlights the potential of targeting oncostreams to control glioma invasion and enhance treatment efficacy.
Funder
Ian's Friends Foundation
Pediatric Brain Tumor Foundation
NIH Blueprint for Neuroscience Research
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献