Affiliation:
1. Institute of Materials Shanghai University Shanghai 200444 China
2. Zhejiang Institute of Advanced Materials Shanghai University Jiashan 314100 China
3. Department of Mechanical Engineering National University of Singapore Singapore 117575 Singapore
Abstract
AbstractSuperplastic metals that exhibit exceptional ductility (>300%) are appealing for use in high‐quality engineering components with complex shapes. However, the wide application of most superplastic alloys has been constrained due to their poor strength, the relatively long superplastic deformation period, and the complex and high‐cost grain refinement processes. Here these issues are addressed by the coarse‐grained superplasticity of high‐strength lightweight medium entropy alloy (Ti43.3V28Zr14Nb14Mo0.7, at.%) with a microstructure of ultrafine particles embedded in the body‐centered‐cubic matrix. The results demonstrate that the alloy reached a high coarse‐grained superplasticity greater than ≈440% at a high strain rate of 10−2 s−1 at 1173 K and with a gigapascal residual strength. A consecutively triggered deformation mechanism that sequences of dislocation slip, dynamic recrystallization, and grain boundary sliding in such alloy differs from conventional grain‐boundary sliding in fine‐grained materials. The present results open a pathway for highly efficient superplastic forming, broaden superplastic materials to the high‐strength field, and guide the development of new alloys.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献