Integration of Wallach's Rule into Intermolecular Charge Transfer: A Visual Strategy for Chiral Purification

Author:

Wang Wei1,Gong Jianye2,Zhao Jiaqiang1,Zhang Hao3,Wen Wei3,Zhao Zujin4,Li Yan Jie1,Wang Jianguo2ORCID,Huang Cheng Zhi1,Gao Peng Fei1ORCID

Affiliation:

1. Key Laboratory of Biomedical Analytics Chongqing Science and Technology Bureau College of Pharmaceutical Sciences Southwest University Chongqing 400715 China

2. College of Chemistry and Chemical Engineering Inner Mongolia Key Laboratory of Fine Organic Synthesis Inner Mongolia University Hohhot 010021 China

3. Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China

4. State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China

Abstract

AbstractExploring the molecular packing and interaction between chiral molecules, no matter single enantiomer or racemates, is important for recognition and resolution of chiral drugs. However, sensitive and non‐destructive analysis methods are lacking. Herein, an intermolecular‐charge transfer (ICT) based spectroscopy is reported to reveal the differences in interaction between the achiral acceptor 1,2,4,5‐tetracyanobenzene (TCNB) and the chiral donors, including S, R, and racemic naproxen (S/R/rac‐NAP). In this process, S‐NAP+TCNB and R‐NAP+TCNB display a narrower band gap attributed to the newly formed ICT state. In contrast, the mixed rac‐NAP and TCNB exhibit almost no significant change due to the strong affinity between the stereoisomers according to the Wallach's rule. Thus, S/R‐NAP can be easily distinguished from rac‐NAP based on significantly different optical behavior. The single crystal analysis, infrared spectroscopy, fluorescence spectroscopy, and theoretical calculation of naproxen confirm the importance of carboxyl for this differentiation in molecular packing and interaction. In addition, the esterification derivatization of naproxen achieves the manipulation of the intermolecular interaction model of racemates from the absolute Wallach's rule to a coexisting form of Wallach's rule and ICT. Further, visualized chiral purification of naproxen by the simple cocrystallization method is achieved through the collaboration of ICT and Wallach's rule.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3