An Ultrasensitive Genetically Encoded Voltage Indicator Uncovers the Electrical Activity of Non‐Excitable Cells

Author:

Rühl Philipp1ORCID,Nair Anagha G.1,Gawande Namrata1,Dehiwalage Sassrika N. C. W.1,Münster Lukas1,Schönherr Roland1,Heinemann Stefan H.1

Affiliation:

1. Center for Molecular Biomedicine, Department of Biophysics Friedrich Schiller University Jena and Jena University Hospital D‐07745 Jena Germany

Abstract

AbstractMost animal cell types are classified as non‐excitable because they do not generate action potentials observed in excitable cells, such as neurons and muscle cells. Thus, resolving voltage signals in non‐excitable cells demands sensors with exceptionally high voltage sensitivity. In this study, the ultrabright, ultrasensitive, and calibratable genetically encoded voltage sensor rEstus is developed using structure‐guided engineering. rEstus is most sensitive in the resting voltage range of non‐excitable cells and offers a 3.6‐fold improvement in brightness change for fast voltage spikes over its precursor ASAP3. Using rEstus, it is uncovered that the membrane voltage in several non‐excitable cell lines (A375, HEK293T, MCF7) undergoes spontaneous endogenous alterations on a second to millisecond timescale. Correlation analysis of these optically recorded voltage alterations provides a direct, real‐time readout of electrical cell–cell coupling, showing that visually connected A375 and HEK293T cells are also largely electrically connected, while MCF7 cells are only weakly coupled. The presented work provides enhanced tools and methods for non‐invasive voltage imaging in living cells and demonstrates that spontaneous endogenous membrane voltage alterations are not limited to excitable cells but also occur in a variety of non‐excitable cell types.

Funder

Simons Foundation Autism Research Initiative

Deutscher Akademischer Austauschdienst

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3