Affiliation:
1. School of Materials Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
2. School of Minerals Processing and Bioengineering Central South University Changsha 410083 P. R. China
Abstract
AbstractDielectric encapsulation materials are promising for solar cell areas, but the unsatisfactory light‐management capability and relatively poor dielectric properties restrict their further applications in photovoltaic and microelectronic devices. Herein, an interface fusion strategy to engineer the interface of MOF (UiO‐66‐NH2) with anhydride terminated imide oligomer (6FDA‐TFMB) is designed and a novel MOF cluster (UFT) with enhanced forward scattering and robust porosity is prepared. UFT is applied as an optical and dielectric modifier for bisphenol A epoxy resin (DGEBA), and UFT epoxy composites with high transmittance (>80%), tunable haze (45–58%) and excellent dielectric properties can be prepared at low UFT contents (0.5–1 wt%), which delivers an optimal design for dielectric encapsulation systems with efficient light management in solar cells. Additionally, UFT epoxy composites also show excellent UV blocking, and hydrophobic, thermal and mechanical properties. This work provides a template for the synthesis of covalent bond‐mediated nanofillers and for the modulation of haze and dielectric properties of dielectric encapsulation materials for energy systems, semiconductors, microelectronics, and more.
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献