In Situ Hydrogel Modulates cDC1‐Based Antigen Presentation and Cancer Stemness to Enhance Cancer Vaccine Efficiency

Author:

Gao Tong1,Yuan Shijun1,Liang Shuang1,Huang Xinyan1,Liu Jinhu1,Gu Panpan1,Fu Shunli1,Zhang Na1ORCID,Liu Yongjun1

Affiliation:

1. Department of Pharmaceutics Key Laboratory of Chemical Biology (Ministry of Education) NMPA Key Laboratory for Technology Research and Evaluation of Drug Products School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University 44 Wenhua Xi Road Jinan Shandong 250012 China

Abstract

AbstractEffective presentation of antigens by dendritic cells (DC) is essential for achieving a robust cytotoxic T lymphocytes (CTLs) response, in which cDC1 is the key DC subtype for high‐performance activation of CTLs. However, low cDC1 proportion, complex process, and high cost severely hindered cDC1 generation and application. Herein, the study proposes an in situ cDC1 recruitment and activation strategy with simultaneous inhibiting cancer stemness for inducing robust CTL responses and enhancing the anti‐tumor effect. Fms‐like tyrosine kinase 3 ligand (FLT3L), Poly I:C, and Nap‐CUM (NCUM), playing the role of cDC1 recruitment, cDC1 activation, inducing antigen release and decreasing tumor cell stemness, respectively, are co‐encapsulated in an in situ hydrogel vaccine (FP/NCUM‐Gel). FP/NCUM‐Gel is gelated in situ after intra‐tumoral injection. With the near‐infrared irradiation, tumor cell immunogenic cell death occurred, tumor antigens and immunogenic signals are released in situ. cDC1 is recruited to tumor tissue and activated for antigen cross‐presentation, followed by migrating to lymph nodes and activating CTLs. Furthermore, tumor cell stemness are inhibited by napabucasin, which can help CTLs to achieve comprehensive tumor killing. Collectively, the proposed strategy of cDC1 in situ recruitment and activation combined with stemness inhibition provides great immune response and anti‐tumor potential, providing new ideas for clinical tumor vaccine design.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3