Maximizing Electric Power through Spectral‐Splitting Photovoltaic‐Thermoelectric Hybrid System Integrated with Radiative Cooling

Author:

Guo Jiangfeng1234ORCID,Huai Xiulan134

Affiliation:

1. Institute of Engineering Thermophysics Chinese Academy of Sciences Beijing 100190 P. R. China

2. Department of Chemical Engineering Imperial College London London SW7 2AZ UK

3. Nanjing Institute of Future Energy System Nanjing 211135 P.R. China

4. School of Engineering Science University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractAs zero‐emission technologies, a daytime radiative cooling (RC) strategy developed recently, and photovoltaic (PV) and thermoelectric (TE) technologies have aroused great interest to reduce fossil fuel consumption and carbon emissions. How to integrate these state‐of‐the‐art technologies to maximise clean electricity from the sun and space remains a huge challenge, and the limit efficiency is still unclear. In this study, a spectral‐splitting PV‐TE hybrid system integrated with RC is proposed to maximise clean electricity from the sun and space without any emissions. For the sun acting as a typical constant heat‐flux heat source, the current thermoelectric theory overestimates the thermoelectric efficiency highly since the theory is based on constant temperature‐difference conditions. A new theory based on heat‐flux conditions is employed to achieve maximum thermoelectric efficiency. The PV‐TE hybrid system with RC is superior to the conventional hybrid system, not only in terms of higher efficiency but also in its 24‐h operation capacity. In a system with a single‐junction cell, the total efficiency with 30 suns (39.4%) is higher than the theoretical PV efficiency at 500 suns (38.2%). In a hybrid system with four‐junction cells, total efficiency is over 65% which is superior to most current photoelectric and thermal power systems.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3