Inverse Design of Photonic Surfaces via High throughput Femtosecond Laser Processing and Tandem Neural Networks

Author:

Park Minok1ORCID,Grbčić Luka2ORCID,Motameni Parham3,Song Spencer3,Singh Alok1,Malagrino Dante3,Elzouka Mahmoud1ORCID,Vahabi Puya H.3,Todeschini Alberto4,de Jong Wibe Albert2,Prasher Ravi15ORCID,Zorba Vassilia15ORCID,Lubner Sean D.16ORCID

Affiliation:

1. Energy Technologies Area Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

2. Applied Mathematics and Computational Research Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

3. School of Information University of California at Berkeley Berkeley CA 94709 USA

4. School of Computer Science & Information Technology Lucerne University of Applied Sciences and Arts Lucerne 6343 Switzerland

5. Department of Mechanical Engineering University of California at Berkeley Berkeley CA 94709 USA

6. Department of Mechanical Engineering, Division of Materials Science and Engineering Boston University Boston MA 02215 USA

Abstract

AbstractThis work demonstrates a method to design photonic surfaces by combining femtosecond laser processing with the inverse design capabilities of tandem neural networks that directly link laser fabrication parameters to their resulting textured substrate optical properties. High throughput fabrication and characterization platforms are developed that generate a dataset comprising 35280 unique microtextured surfaces on stainless steel with corresponding measured spectral emissivities. The trained model utilizes the nonlinear one‐to‐many mapping between spectral emissivity and laser parameters. Consequently, it generates predominantly novel designs, which reproduce the full range of spectral emissivities (average root‐mean‐squared‐error < 2.5%) using only a compact region of laser parameter space 25 times smaller than what is represented in the training data. Finally, the inverse design model is experimentally validated on a thermophotovoltaic emitter design application. By synergizing laser‐matter interactions with neural network capabilities, the approach offers insights into accelerating the discovery of photonic surfaces, advancing energy harvesting technologies.

Funder

Lawrence Berkeley National Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3