Symmetrical Design of Biphenazine Derivative Anode for Proton Ion Batteries with High Voltage and Long‐Term Cycle Stability

Author:

Wang Caixing1,He Dunyong1,Wang Huaizhu2,Guo Jiandong1,Bao Zhuoheng3,Feng Yuge3,Hu Linfeng3,Zheng Chenxi1,Zhao Mengfan1,Wang Xuemei1,Wang Yanrong1ORCID

Affiliation:

1. Institute of Innovation Materials and Energy School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China

2. School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China

3. School of Materials Science and Engineering Southeast University Nanjing Jiangsu 211189 China

Abstract

AbstractOrganic anodes have emerged as a promising energy storage medium in proton ion batteries (PrIBs) due to their ability to reversibly accommodate non‐metallic proton ions. Nevertheless, the currently available organic electrodes often encounter dissolution issues, leading to a decrease in long‐cycle stability. In addition, the inherent potential of the organic anode is generally relatively high, resulting in low cell voltage of assembled PrIBs (<1.0 V). To address these challenges, a novel long‐period stable, low redox potential biphenylzine derivative, [2,2′‐biphenazine]‐7,7′‐tetraol (BPZT) is explored, from the perspective of molecular symmetry and solubility, in conjunction with the effect of the molecular frontier orbital energy levels on its redox potential. Specifically, BPZT exhibited a low potential of 0.29 V (vs SHE) and is virtually insoluble in 2 m H2SO4 electrolyte during cycling. When paired with MnO2@GF or PbO2 cathodes, the resulting PrIBs achieve cell voltages of 1.07 V or 1.44 V, respectively, and maintain a high capacity retention of 90% over 20000 cycles. Additionally, these full batteries can operate stably at a high mass loading of 10 mgBPZT cm−2, highlighting their potential toward long‐term energy storage applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3