Affiliation:
1. Department of Preventive Veterinary Medicine College of Veterinary Medicine Jilin University Changchun Jilin 130062 P. R. China
Abstract
AbstractThe rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐positive bacteria through a unique dual‐targeting mechanism without detectable resistance. Meanwhile, an SR25‐functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25‐incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin‐resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献