Predicting Antigen‐Specificities of Orphan T Cell Receptors from Cancer Patients with TCRpcDist

Author:

Perez Marta A. S.12ORCID,Chiffelle Johanna13,Bobisse Sara13,Mayol‐Rullan Francesca12,Bugnon Marine12,Bragina Maiia E.12,Arnaud Marion13,Sauvage Christophe13,Barras David13,Laniti Denarda Dangaj13,Huber Florian13,Bassani‐Sternberg Michal13,Coukos George134,Harari Alexandre13,Zoete Vincent12ORCID

Affiliation:

1. Department of Oncology Ludwig Institute for Cancer Research Lausanne Branch Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Agora Cancer Research Center Lausanne CH‐1005 Switzerland

2. Molecular Modeling Group SIB Swiss Institute of Bioinformatics University of Lausanne Quartier UNIL‐Sorge, Bâtiment Amphipole Lausanne CH‐1015 Switzerland

3. Center for Cell Therapy CHUV‐Ludwig Institute Lausanne CH‐1011 Switzerland

4. Department of Oncology Immuno‐Oncology Service Lausanne University Hospital Lausanne CH‐1011 Switzerland

Abstract

AbstractApproaches to analyze and cluster T‐cell receptor (TCR) repertoires to reflect antigen specificity are critical for the diagnosis and prognosis of immune‐related diseases and the development of personalized therapies. Sequence‐based approaches showed success but remain restrictive, especially when the amount of experimental data used for the training is scarce. Structure‐based approaches which represent powerful alternatives, notably to optimize TCRs affinity toward specific epitopes, show limitations for large‐scale predictions. To handle these challenges, TCRpcDist is presented, a 3D‐based approach that calculates similarities between TCRs using a metric related to the physico‐chemical properties of the loop residues predicted to interact with the epitope. By exploiting private and public datasets and comparing TCRpcDist with competing approaches, it is demonstrated that TCRpcDist can accurately identify groups of TCRs that are likely to bind the same epitopes. Importantly, the ability of TCRpcDist is experimentally validated to determine antigen specificities (neoantigens and tumor‐associated antigens) of orphan tumor‐infiltrating lymphocytes (TILs) in cancer patients. TCRpcDist is thus a promising approach to support TCR repertoire analysis and TCR deorphanization for individualized treatments including cancer immunotherapies.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Biltema Foundation

Ludwig Institute for Cancer Research

Université de Lausanne

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3