Dendritic Cell‐Hitchhiking In Vivo for Vaccine Delivery to Lymph Nodes

Author:

Zhou Lei1,Zhao Ling1,Wang Mengyao1,Qi Xu1,Zhang Xin1,Song Qingying1,Xue Dayu1,Mao Meihua1,Zhang Zhenzhong12,Shi Jinjin12,Si Pilei3,Liu Junjie12ORCID

Affiliation:

1. School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China

2. Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou 450001 China

3. Department of Breast Surgery, Henan Provincial People's Hospital People's Hospital of Zhengzhou University People's Hospital of Henan University Zhengzhou Henan 450003 China

Abstract

AbstractTherapeutic cancer vaccines are among the first FDA‐approved cancer immunotherapies. Among them, it remains a major challenge to achieve robust lymph‐node (LN) accumulation. However, delivering cargo into LN is difficult owing to the unique structure of the lymphatics, and clinical responses have been largely disappointing. Herein, inspired by the Migrated‐DCs homing from the periphery to the LNs, an injectable hydrogel‐based polypeptide vaccine system is described for enhancing immunostimulatory efficacy, which could form a local niche of vaccine “hitchhiking” on DCs. The OVA peptide modified by lipophilic DSPE domains in the hydrogel is spontaneously inserted into the cell membrane to achieve “antigen anchoring” on DCs in vivo. Overall, OVA peptide achieves active access LNs through recruiting and “hitchhiking” subcutaneous Migrated‐DCs. Remarkably, it is demonstrated that the composite hydrogel enhances LNs targeting efficacy by approximately six‐fold compared to free OVA peptide. Then, OVA peptide can be removed from the cell surface under a typical acidic microenvironment within the LNs, further share them with LN‐resident APCs via the “One‐to‐Many” strategy (One Migrated‐DC corresponding to Many LN‐resident APCs), thereby activating powerful immune stimulation. Moreover, the hydrogel vaccine exhibits significant tumor growth inhibition in melanoma and inhibits pulmonary metastatic nodule formation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3