Affiliation:
1. Molecular Robotics Laboratory Department of Robotics Graduate School of Engineering Tohoku University Sendai 980‐8579 Japan
2. Department of Chemical and Biological Engineering University of Sheffield Mappin Street Sheffield S1 3JD UK
Abstract
AbstractCatalytic Janus colloids, with one hemi‐sphere covered by a hydrogen peroxide reduction catalyst such as platinum, represent one of the most experimentally explored examples of self‐motile active colloid systems. This paper comparatively investigates the motile behavior of symmetrical catalytic colloids produced by a solution‐based metal salt reduction process. Despite the significant differences in the distribution of catalytic activity, this study finds that the motion produced by symmetrical colloids is equivalent to that previously reported for Janus colloids. It also shows that introducing a Janus structure to the symmetrical colloids via masking does not significantly modify their motion. These findings could indicate that very subtle variations in surface reactivity can be sufficient to produce Janus‐like active Brownian particle‐type motion, or that a symmetry‐breaking phenomena is present. The study will consequently motivate fresh theoretical attention and also demonstrate a straightforward route to access large quantities of motile active colloids, which are expected to show subtly different phenomenology compared to those with Janus structures.
Funder
Engineering and Physical Sciences Research Council
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)