Self‐Assembling Anti‐Freezing Lamellar Nanostructures in Subzero Temperatures

Author:

Yin Hongyao1ORCID,Guo Weiluo1,Wang Runxi2,Doutch James3,Li Peixun3,Tian Qiang4,Zheng Zhuo1,Xie Lingzhi2,Feng Yujun1

Affiliation:

1. State Key Laboratory of Polymer Materials Engineering Polymer Research Institute Sichuan University Chengdu 610065 P. R. China

2. Institute of New Energy and Low‐Carbon Technology Sichuan University Chengdu 610065 P. R. China

3. ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory Harwell Campus OXON Didcot OX11 0QX UK

4. State Key laboratory of Environment‐Friendly Energy Materials, School of Materials and Chemistry Southwest University of Science and Technology Mianyang 621010 P. R. China

Abstract

AbstractThe requirement for cryogenic supramolecular self‐assembly of amphiphiles in subzero environments is a challenging topic. Here, the self‐assembly of lamellar lyotropic liquid crystals (LLCs) are presented to a subzero temperature of −70 °C. These lamellar nanostructures are assembled from specifically tailored ultra‐long‐chain surfactant stearyl diethanolamine (SDA) in water/glycerol binary solvent. As the temperature falls below zero, LLCs with a liquid‐crystalline Lα phase, a tilted Lβ phase, and a new folded configuration are obtained consecutively. A comprehensive experimental and computational study is performed to uncover the precise microstructure and formation mechanism. Both the ultra‐long alkyl chain and head group of SDA play a crucial role in the formation of lamellar nanostructures. SDA head group is prone to forming hydrogen bonds with water, rather than glycerol. Glycerol cannot penetrate the lipid layer, which mixes with water arranging outside of the lipid bilayer, providing an ideal anti‐freezing environment for SDA self‐assembly. Based on these nanostructures and the ultra‐low freezing point of the system, a series of novel cryogenic materials are created with potential applications in extremely cold environments. These findings would contribute to enriching the theory and research methodology of supramolecular self‐assembly in extreme conditions and to developing novel anti‐freezing materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3